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Reliability Is important

Total cost
_ _ of ownership
« Failures are expensive.

Costo
downtime

o System flakiness is major source of user frustration:
e 25% In survey have seen peers %
kicking their computers. G-

* 2% claim to have hit the person
next to them in their frustration.
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Reliability and HEC

e Petascale computing Is coming.
e Orders of magnitude more components.
* Orders of magnitude more failures ....
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What do fatlures look like?

e Making systems more reliable requires good
understanding of real failures:
e Cause of failures?
e Falilure rates?
e Time to repair?
« What parameters affect the above?
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' None of the
_ data publicly
Previous work: __— available!
| Study [ Date ¥ Length Environment | Type of Data | # Failures | STatistics
[3. 4] 1990 3 years Tandem systems Customer data 800 Root cause
[7] 1999 6 months 70 Windows NT mail server Error logs 1100 Root cause
[16] 2003 3-6 months 3000 machines i Internet services Error logs 501 Root cause
[13] 1995 T years VAX systems Field data N/A Root cause
[19] 1990 8 months 7 VAX systems Error logs 364 TBF
[9] 1990 22 months 13 VICE file servers Error logs 300 TBE
[6] 1986 3 years 2 IBM 370/169 mainframes Error logs 456 TBF
[18] 2004 1 vear 395 nodes mn machine room Error logs 1285 TBF
[5] 2002 § 1-36 months 70 nodes i vniversity and Internet services Error logs 3200 TBE
[24] 1999 4 months 303 nodes in corporate envr. Error logs 2127 TBF
[13] 2003 6—8 weeks 300 vversity cluster and Condor[20] nodes | Custom monitoring N/A TBE
[10] 1995 3 months 1170 internet hosts RPC polling N/A TBETTR
[2] 1980 A_ 1 month J PDP-10 with KL10 processor N/A N/A TBE.Utilization
Publicly

Talk outline

% available!

 Long-term goals: Create public failure data repository.

e Our current work: Analysis of 9 years of failure data from LANL.

Exploit failure data for better system eval & design.
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Typical LANL systems and workloads
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Clusters of 2/4-way SMPs Clusters of NUMAS
e commodity components « 128-256 procs per node
» 100s to 1000s of nodes. * 10s of nodes.
Workloads:

=| arge-scale simulations and visualization, e.g. nuclear
stockpile stewardship. Mostly CPU-bound.
=Failure tolerance through checkpoint-restart.
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The data

 Record created by administrator for each node outage:
[ StartTime, | EndTime, | System | Node | Root cause ]

— CPU
— Hardware —
Memory
— Software |
t— Network
— Human
L— Environment
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The data

 Record created by administrator for each node outage:
[ StartTime, | EndTime, | System | Node | Root cause ]
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The data

 Record created by administrator for each node outage:

[ StartTime, | EndTime, | System | Node | Root cause ]
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The data

 Record created by administrator for each node outage:
[ StartTime, | EndTime, | System | Node | Root cause ]

1[]4;

3 NUMA clusters (8,744 procs)

Number of observed failures
=

1997 1999 2001 2003 2005
Year
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The data

 Record created by administrator for each node outage:
[ StartTime, | EndTime, | System | Node | Root cause ]

1[]4;

» 8 SMP clusters (11,392 procs)
» 1 SMP cluster (328 procs)

/ 4 6 SMP clusters (3,328 procs)

" NUMA system (256 procs)

Number of observed failures
=

3 SMPs (44 procs)

= 22 systems, 4,750 nodes and 24,101 processors.
= Total of 23,000 records over 9 years!
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Outline

[  What do failure rates (or time between failures) look like? ]
 What do repair times look like?
 What are the common root causes of failures?
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What do failure rates look like?

1300

1000

Y 4096 procs

128 procs

4 &5 & F &8 % 10 11 12 12 14 13 16 17 18 158 20 21 22

System 1D

Number of failures per year
B

e System failure rate varies from 20 — 1159 failures per yeatr.
e Large variability even within systems of same HW type.
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How does failure rate vary across systems?
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 Normalized failure rates are similar for system of same
type, despite large size differences.

=> Failure rate grows ~linearly with system size.
e Similar even across systems of different type.
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How does failure rate vary across systems?
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 Normalized failure rates are similar for system of same
type, despite large size differences.

=> Failure rate grows ~linearly with system size.
e Similar even across systems of different type.
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How does failure rate vary across nodes In a system?

« Common assumption: Nodes see independent Poisson
processes with equal mean.

__—r
so0r Front-end Visualization
250} node / nodes

Number of failures during lfetime

0 10 20 30 40
Node ID

e Large skew in distribution across nodes.
=> Front-end & visualization nodes have higher failure rate.
« Skew even in compute-only nodes.
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How does failure rate change over system lifetime?

Common model:
The “bathtub”

Infant mortality Wear-out
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How does failure rate change over system lifetime?

Common model:
The “bathtub”

Infant mortality Wear-out

 Failure rate can look different from
theoretical models such as the “bathtub”.

 The shape of the curve varies greatly
across systems.

»

A

Failure rate

v

Time in use

System 19 System 5

=

Failures per month
Fa
o
Failuras per month

0 10 20 30 4 50 60 0 10 20 30 40
Months in production use Maonths in production use

Car
Parallel Data Laboratory 19



Statistical properties of time between failure

« Common assumption: Time between failure follows
exponential distribution.

 LANL data differs from exponential:
« Variability is higher (C* = 1.7--12).
 Hazard rates are decreasing.
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* Probability of failure decreases with time since last failure.
(a e Should checkpointing intervals really be fixed?



Statistical properties of time between failure

« Common assumption: Failures are independent.
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Outline

 What do failure rates (or time between failures) look like?
[  What do repair times look like? }
 What are the common root causes of failures?
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What do repair times look like?

g 8 B B B

Median repair time (min)
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e Median repair times vary from 10 — 350 min.

» Less variability within system of same HW type.
 Little correlation with system size.
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Statistical properties of repair times

« Common assumption: Time to repair follows exponential
distribution .

 LANL data differs from exponential:
e Variability is higher (C* = 3 -- 200).
 Hazard rates are decreasing.
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Outline

 What do failure rates (or time between failures) look like?
 What do repair times look like?

[ * What are the common root causes of failures?
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What Is the common root cause of failures?

P Hardware
Software

BN etwork

[ JEnvironment

EEHuman
B Urkrown

Relative frequency of root
cause by system type.
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What Is the common root cause of failures?
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Relative frequency of root Fraction of total downtime
cause by system type. caused by each root cause.

 Breakdown varies across systems.

« Hardware and software tend to be the most common root
cause, and the largest contributors to system downtime.
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Summary of data analysis

« Many common failure models are not realistic:
» Failure rates and repair times are not exponential.
» Failure rates are not i.i.d.
» Failures are not evenly distributed over cluster nodes.
» Failure rates over lifetime can look very different from bathtub.

o Falilure rates

« vary widely across systems

* mostly depend on system size, not system type.
 Repalir times

e vary widely across systems

* mostly depend on system type, not system size.

e Hardware and software related failures dominate in
HPC environment.
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Long-term research goals

» Create public failure data repository.
e Collect data from diverse set of sites.
« Add other types of data
— Error logs.
— Utilization and workload data.
— Sensor data.
— Storage data.

» Best practices for data collection
« How much data is enough?
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Long-term research goals

* Analysis of data
« Statistical properties.

— Distributions

— Correlations
 How do you deal with imperfect data?
e Compare with commonly made assumptions.

* More realistic performance evaluation
« Data-driven dependability benchmarking.

« What are the right failure models for dependability
simulation, analysis and experiments?

— As realistic as possible.
— Yet simple ...
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Long-term research goals

« EXxploit data for building better systems

« Can we exploit statistical properties (e.g. decreasing
hazard rates) to improve fault tolerance?

* Proactive fault tolerance?
« Automated problem diagnosis?

Carnegie Mellon
Parallel Data Laboratory 31



Thank you!
Questions?



